CRISPR敲入技术:原理、优化策略与应用
CRISPR-Cas9技术自问世以来,已成为基因编辑领域的革命性工具。其核心功能包括基因敲除(Knock-out)和基因敲入(Knock-in)。与通过非同源末端连接(NHEJ)实现基因破坏的敲除不同,敲入技术依赖同源定向修复(HDR)机制,能够实现精准的基因插入、替换或点突变。这种精准性使得CRISPR敲入在基因治疗、疾病模型构建和功能基因组学研究中具有不可替代的价值。
CRISPR-Cas9技术自问世以来,已成为基因编辑领域的革命性工具。其核心功能包括基因敲除(Knock-out)和基因敲入(Knock-in)。与通过非同源末端连接(NHEJ)实现基因破坏的敲除不同,敲入技术依赖同源定向修复(HDR)机制,能够实现精准的基因插入、替换或点突变。这种精准性使得CRISPR敲入在基因治疗、疾病模型构建和功能基因组学研究中具有不可替代的价值。
在肿瘤研究中,基因突变与肿瘤发生、转移及复发密切相关,运用CRISPR等先进的高通量筛选技术寻找最关键调控基因或其编码产物,不仅进一步完善了肿瘤基因图谱,更为临床治疗策略提供了新思路。免疫治疗作为极具前景的肿瘤治疗方式,虽已在临床验证其有效性,但仅能覆盖小部分患者群体。发现新型免疫治疗靶点成为突破肿瘤免疫治疗瓶颈的关键。本文从体外/体内筛选模型的选择,到潜在免疫检查点及CAR-T细胞增效基因的筛选,多维度探讨功能筛选在肿瘤免疫学中的应用,为肿瘤患者提供创新性治疗线索。
Why does the same gene cause a phenotypic change when knocked down but not when knocked out? The disconnection between genotype and expected phenotype in such cases may be attributed to the activation of the Genetic Compensation Response (GCR). When a gene is mutated or knocked out, GCR is triggered, compensating for the lost function by upregulating homologous or functionally similar genes. This response is particularly pronounced when the mRNA contains a premature termination codon (PTC). GCR is not only a protective mechanism ensuring genetic robustness, but it may also play a significant role in influencing cancer progression. Understanding the mechanisms behind GCR is crucial for advancing our knowledge of tumor progression and for identifying new therapeutic targets.